skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Naliboff, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although many collisional orogens form after subduction of oceanic lithosphere between two continents, some orogens result from strain localization within a continent via inversion of structures inherited from continental rifting. Intracontinental rift-inversion orogens exhibit a range of structural styles, but the underlying causes of such variability have not been extensively explored. We use numerical models of intracontinental rift inversion to investigate the impact of parameters including rift structure, rift duration, post-rift cooling, and convergence velocity on orogen structure. Our models reproduce the natural variability of rift-inversion orogens and can be categorized using three endmember styles: asymmetric underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). Inversion of narrow rifts tends to produce orogens with more localized deformation (styles AU and PF) than those resulting from wide rifts. However, multiple combinations of the parameters we investigated can produce the same structural style. Thus, our models indicate no unique relationship between orogenic structure and the conditions prior to and during inversion. Because the style of rift-inversion orogenesis is highly contingent upon the rift history prior to inversion, knowing the geologic history that preceded rift inversion is essential for translating orogenic structure into the processes that produced that structure. 
    more » « less
  2. We are pleased to announce the release of ASPECT 2.5.0. ASPECT is the Advanced Solver for Problems in Earth's ConvecTion. It uses modern numerical methods such as adaptive mesh refinement, multigrid solvers, and a modular software design to provide a fast, flexible, and extensible mantle convection solver. ASPECT is available from https://aspect.geodynamics.org/ and the release is available from https://geodynamics.org/resources/aspect and https://github.com/geodynamics/aspect/releases/tag/v2.5.0 Among others this release includes the following significant changes: ASPECT now includes version 0.5.0 of the Geodynamic World Builder. (Menno Fraters and other contributors) ASPECT's manual has been converted from LaTeX to Markdown to be hosted as a website at https://aspect-documentation.readthedocs.io. (Chris Mills, Mack Gregory, Timo Heister, Wolfgang Bangerth, Rene Gassmoeller, and many others) New: ASPECT now requires deal.II 9.4 or newer. (Rene Gassmoeller, Timo Heister) ASPECT now supports a DebugRelease build type that creates a debug build and a release build of ASPECT at the same time. It can be enabled by setting the CMake option CMAKE_BUILD_TYPE to DebugRelease or by typing "make debugrelease". (Timo Heister) ASPECT now has a CMake option ASPECT_INSTALL_EXAMPLES that allows building and install all cookbooks and benchmarks. ASPECT now additionally installs the data/ directory. Both changes are helpful for installations that are used for teaching and tutorials. (Rene Gassmoeller) Changed: ASPECT now releases the memory used for storing initial conditions and the Geodynamic World Builder after model initialization unless an owning pointer to these objects is kept. This reduces the memory footprint for models initialized from large data files. (Wolfgang Bangerth) Added: Various helper functions to distinguish phase transitions for different compositions and compositional fields of different types. (Bob Myhill) Added: The 'adiabatic' initial temperature plugin can now use a spatially variable top boundary layer thickness read from a data file or specified as a function in the input file. Additionally, the boundary layer temperature can now also be computed following the plate cooling model instead of the half-space cooling model. (Daniel Douglas, John Naliboff, Juliane Dannberg, Rene Gassmoeller) New: ASPECT now supports tangential velocity boundary conditions with GMG for more geometries, such as 2D and 3D chunks. (Timo Heister, Haoyuan Li, Jiaqi Zhang) New: Phase transitions can now be deactivated outside a given temperature range specified by upper and lower temperature limits for each phase transition. This allows implementing complex phase diagrams with transitions that intersect in pressure-temperature space. (Haoyuan Li) New: There is now a postprocessor that outputs the total volume of the computational domain. This can be helpful for models using mesh deformation. (Anne Glerum) New: Added a particle property 'grain size' that tracks grain size evolution on particles using the 'grain size' material model. (Juliane Dannberg, Rene Gassmoeller) Fixed: Many bugs, see link below for a complete list. (Many authors. Thank you!). A complete list of all changes and their authors can be found at https://aspect.geodynamics.org/doc/doxygen/changes_between_2_84_80_and_2_85_80.html Wolfgang Bangerth, Juliane Dannberg, Menno Fraters, Rene Gassmoeller, Anne Glerum, Timo Heister, Bob Myhill, John Naliboff, and many other contributors. 
    more » « less
  3. null (Ed.)
  4. Abstract The redistribution of past and present ice and ocean loading on Earth's surface causes solid Earth deformation and geoid changes, known as glacial isostatic adjustment. The deformation is controlled by elastic and viscous material parameters, which are inhomogeneous in the Earth. We present a new viscoelastic solid Earth deformation model in ASPECT (Advanced Solver for Problems in Earth's ConvecTion): a modern, massively parallel, open‐source finite element code originally designed to simulate convection in the Earth's mantle. We show the performance of solid Earth deformation in ASPECT and compare solutions to TABOO, a semianalytical code, and Abaqus, a commercial finite element code. The maximum deformation and deformation rates using ASPECT agree within 2.6% for the average percentage difference with TABOO and Abaqus on glacial cycle (∼100 kyr) and contemporary ice melt (∼100 years) timescales. This gives confidence in the performance of our new solid Earth deformation model. We also demonstrate the computational efficiency of using adaptively refined meshes, which is a great advantage for solid Earth deformation modeling. Furthermore, we demonstrate the model performance in the presence of lateral viscosity variations in the upper mantle and report on parallel scalability of the code. This benchmarked code can now be used to investigate regional solid Earth deformation rates from ice age and contemporary ice melt. This is especially interesting for low‐viscosity regions in the upper mantle beneath Antarctica and Greenland, where it is not fully understood how ice age and contemporary ice melting contribute to geodetic measurements of solid Earth deformation. 
    more » « less